Borůvka-Algorithmus: Unterschied zwischen den Versionen

Aus KGS-Wiki
K (Links korrigiert)
K (Beispielgraphen durch Vorlageneinbindung ersetzt (sooooo guuuuuut...))
Zeile 1: Zeile 1:
{{Thumbnailbox|
{{Thumbnailbox|
INHALT={{#mermaid:graph LR
INHALT={{Beispielgraph}}
a((A))
b((B))
c((C))
d((D))
e((E))
a -- 3 --- b
b -- 7 --- c
a -- 1 --- c
b -- 5 --- d
b -- 1 --- e
c -- 2 --- d
d -- 7 --- e
}}
|CAPTION=Ein Beispielgraph}}
|CAPTION=Ein Beispielgraph}}



Version vom 4. Dezember 2023, 01:17 Uhr

Ein Beispielgraph

Der Borůvka-Algorithmus ist ein Algorithmus, der zu einem gegebenen gewichteten Graphen einen minimalen Spannbaum erzeugt.

Der Algorithmus wurde 1926 von Otakar Borůvka entworfen und arbeitet wie folgt:

  1. Gegeben sei ein Graph G.
  2. Erzeuge einen neuen Graphen T, der später der gesuchte Spannbaum wird.
  3. Füge alle Knoten, aber keine Kanten des Graphen G zu T hinzu.
  4. Wiederhole die folgenden Schritte, bis T zusammenhängend ist:
    1. Füge zu jeder Zusammenhangskomponente von T deren kleinste ausgehende Kante in G hinzu.

Beispiel

So erzeugt der Borůvka-Algorithmus aus dem Beispielgraphen einen MST:

Da nun zusammenhängend ist, terminiert der Algorithmus.